
Recipes for Faster Failure Recovery in Smart Grid
Communication Networks
Oana Balmau1, Dacfey Dzung2, Yvonne Anne Pignolet2

1 EPFL, Lausanne, Switzerland, 2 ABB Corporate Research, Baden, Switzerland

Abstract—The communication network supporting Smart
Grid applications must minimize the time that messages cannot
be delivered and thus find alternative paths rapidly. At the same
time, the control overhead in normal operation should be limited
and not interfere with the data traffic. Hence the routing protocol
for such networks has to trade-off these two conflicting goals.

One of the candidate routing protocols for Smart Grid
networks is the IETF IPv6 routing protocol RPL which was
designed for low-power and lossy networks. It strives to consume
little bandwidth and energy with its traffic overhead and to
be under-reactive to network changes. This design choice was
made because in many of the technologies envisioned for such
networks the bandwidth is scarce and the link quality may
vary. Fluctuations should not trigger unnecessary instabilities,
thus the system was designed to have inertia before deciding
to modify communication paths. However, this robustness is in
direct conflict with the agility that is required for fast recovery in
case of communication failures. In this article we investigate the
behavior of the local repair failover mechanism, then we propose
and evaluate simple options to minimize the recovery time.

I. INTRODUCTION

To enable the intelligent management of the production
and consumption of electrical energy with Smart Grid appli-
cations a suitable communication infrastructure has to be in
place. Communication networks for Smart Grids are likely
to consist of a multitude of legacy and new communication
links, such as copper wires, optical fiber, wireless and power
line communication [5], [13]. These networks will disseminate
measurements and control commands to use synergies between
different sectors, e.g., to optimize the interaction of renewable
energy resources and electric vehicle chargers. In other words,
monitoring and control applications covering large numbers of
devices need to be connected to each other.

Recently, Internet protocols are being integrated in an
increasing number of devices, including sensors and actuators
necessary for Smart Grids. Additionally, IPv4 has started to be
replaced by IPv6, due to the ubiquitous nature that the Internet
has achieved, which led to a shortage of IPv4 addresses. Thus
IPv6 is a natural candidate to form the basic protocol for a
smart city communication network. High loss rates, low data
rates and instability are specific to both wireless and power
line networks and require routing protocols that address their
characteristics. The IETF ROLL working group has designed
an IPv6 routing protocol that satisfies the constraints and needs
of Low Power and Lossy Networks, named RPL [18].

One of the key characteristics of RPL is its ability to adapt
to unstable and changing environments. When a path becomes
unusable, the protocol tries to find a suitable alternative. The

mechanism coping with such environmental changes is called
local repair. It allows a RPL node to attach to a different parent
node to maintain connectivity, if possible. This self-healing
procedure is defined in the protocol specification and behaves
according to a set of parameter settings. These configurable
parameters enable a deployment that is tailored to the appli-
cation requirements and provides a trade-off between a fast
reaction to changes and sluggish behavior to avoid unnecessary
changes due to short-time variations in the channel properties.

While route switching latencies and global repair have
been investigated in several studies, the recovery time of
local repair in case of communication failures has not been
examined much. For Smart Grid applications such as soft
real-time status reporting from remote terminal units [1],
communication outage times must be short (e.g. less than
a minute). Hence, short recovery times are crucial to the
applicability of RPL in the Smart Grid. In this paper we
measure the recovery time from the time a link fails until the
repair process has found a new valid route and we propose
parameter settings and simple enhancement mechanisms to
speed up the recovery process. Our mechanisms have been
built into the RPL implementation of ContikiOS 2.5 [17],
an open source operating system designed for the Internet of
Things.

Contributions. This paper investigates the behavior of
RPL in case of communication problems. Four simple mech-
anisms to minimize the recovery time are proposed and ana-
lyzed. A worst case scenario is studied with default parameter
settings as a baseline. To shorten the time until messages can
reach their destination again when a path becomes unavailable,
first the influence of parameters determining the reactivity
to network changes is analyzed and suitable settings are
identified. Second, the benefit of measuring the link quality
to all neighbors regularly is studied. Third, a more meticulous
maintenance of the candidate list for the default route is
devised. Finally, the introduction of a virtual sink for data
collection traffic is proposed. The influence of each of these
enhancements and their combination is then evaluated by sim-
ulations and recommendations for deployment are described.

II. RPL OVERVIEW

RPL is the IETF IPv6 routing standard for routing in Low-
Power and Lossy Networks (LLNs) [18]. One of the main
contributions of RPL lies in its flexibility to optimize paths
for different requirements. First of all, the very creation of the
main data structures has at its core an optimization function,

0

1

2

1

2
3

4

3

5

5

root

1

1 1

1

1

1

1
1

1

1

1

1

2

7

3

2

2

4

r node rank

c link cost

DODAG link

Fig. 1. DODAG example where the objective function minimizes the parent
rank plus the link cost

which can be tailored for various application needs. Secondly,
RPL control messages can be used to pass metrics information
throughout the network, allowing optimization of the objective
function at the node level.

The main elements of RPL architecture are instances and
destination oriented directed acyclic graphs (DODAGs) i.e.
DAGs with a single sink node (or root). A simple DODAG
example is shown in Figure 1. A RPL instance consists of one
(or more) DODAGs and each instance is associated to one
routing objective, derived from one objective function (OF).
The OF is used to establish rules on how nodes will route
in order to satisfy the optimization objective. By exchanging
ICMPv6 control messages, RPL enables nodes to distribute
routing metrics in the network and to form DODAGs according
to the OF rules. Each node joins one DODAG to have a path
towards a sink (root) node.

RPL is designed to support Multipoint to Point, Point
to Multipoint and Point to Point traffic flows. To achieve
this, there are four types of control messages exchanged in
a DODAG: DIOs (DODAG Information Object), used for
DODAG discovery and maintenance, DISs (DODAG Informa-
tion Solicitation Message), used to probe for DIO messages,
DAOs (DODAG Destination Advertisement Object) used to
propagate routing table entries towards the leaves, and DAO-
ACKs, used to respond to the DAOs. More precisely, in the
storing mode of point to multipoint RPL, a node chooses a
preferred parent from its neighbors as a default route towards
the sink according to the ranks received in so-called DODAG
Information Object (DIO) messages and broadcasts DIOs
containing its root, rank and metric information as well. To
inform the nodes on the paths to its root (DODAG sink)
a RPL node sends Destination Advertisement Object (DAO)
messages to its preferred parent which adds an entry in its
routing table and forwards the DAO in turn to its own preferred
parent recursively.

A. Self-healing

One of the defining characteristics of Low Power and
Lossy Networks is instability, often caused by link or node
failures. RPL is a robust protocol, which was designed to
consume few resources with traffic overhead and to be under-

reactive to network changes. Since fluctuations in the network
should not trigger DODAG oscillations, the system has certain
inertia before deciding to change the underlying DODAGs.
Self-healing was integrated in RPL’s design through two
mechanisms: global repair and local repair. When a global
repair is performed, the whole DODAG is reconstructed from
scratch. The inherent complexity of this operation makes it
take up a considerable amount of time. Global repair can be
triggered periodically by the root for maintenance purposes.
On the other hand, local repair is meant to perform small, local
changes. Nodes in the network can initiate local repair inde-
pendently whenever their preferred parent is no longer deemed
appropriate. In order to avoid oscillations, this mechanism
was designed to be rather conservative as well. Consequently,
local repair in its original form does not provide fast failure
recovery. In the subsequent sections (Section III, Section IV),
we will focus on techniques aimed at accelerating the local
repair process whilst avoiding oscillatory behavior.

B. Link Metric Calculation

Routing metrics are quantifiable characteristics that are
used by RPL nodes to determine the best paths for packets
according to an OF. An optimal path is defined as a path
in the DAG that minimizes (or maximizes, respectively) the
Rank value (an abstract scalar value computed using the
objective function with metric values as inputs) between any
given pair of source-destination nodes. In the IETF RFC
6551 [7] several metrics and OFs are described. The original
version of Contiki RPL, provides an implementation of the link
metric ETX (expected number of transmissions), which is a
default and mandatory metric for RPL. An objective function
having ETX as the single metric will attempt to minimize the
nodes’ rank values based on the ETX values on the path to
the root. ETX represents how often the MAC layer tries to
transmit a packet until the transmission is successful. ETX
is updated upon packet sending, based on the status of the
transmission and the number of the attempts necessary for
performing the transmission. Thus, implicitly, ETX includes a
measure for congestion (i.e. if many nodes close by attempt
to send a message at the same time, the value of ETX will
be high, because the channel would be busy). Finally, in order
to take into account previous values of ETX and to avoid
large oscillations, the Contiki RPL implementation applies a
first order low-pass filter when the metric is computed (i.e.
ETX(t) = 0.9 · ETX(t − 1) + 0.1 · ETX(t), where ETX
is the instantaneous value reported by the MAC and ETX is
the smoothed value used for routing).

C. Parameters

RPL is a highly configurable protocol. Apart from objec-
tive functions and metrics, it is also possible to alter various
other parameters within the system. For instance, the frequency
of global repairs, of RPL control messages, which are sent
periodically, default route lifetime, or the maximum number
of potential parents are among the most relevant parameters.

 hop distance to root

0

20

40

60

80

100

su
cc

e
ss

 r
a
te

 i
n
 %

1 2 3 4 5 6 7 8 9 10

Application Message Delivery

0

1

2

3

4

5

6

#
 p

a
ck

e
ts

 /
 s

DIS DIO DAO
DAO ACK

Control Traffic Load

Fig. 2. Baseline of chain topology: boxplots of recovery time measurements (the average of each node is indicated at the top), delivery success probability
of application layer messages and number of control traffic packets per second in chain network (see Section IV for a detailed scenario description). The
maximum recovery time is 641.0s for the node 10 hops away from the root.

D. Recovery Baseline on Chain

Since our goal is to analyze the contributing factors of
recovery without the influence of other mechanisms and events
in the system, it is important to identify the most simple
scenario that allows us to observe it. Otherwise, side effects
and other mechanisms that could impact the recovery time
would need to be considered as well.

To study local repair for multi-point-to-point traffic in
detail, at least one alternative path to the destination must
exist. In other words, in the most simple scenario at least one
node v can find a new path if it cannot reach its root via the
preferred parent anymore. The exact structure of the original
DAG and of the new path do have an influence, but in its
essence the local repair mechanism relies on i) the detection
that the link to v’s old preferred is not available or of too low
quality and ii) the identification of a new suitable preferred
parent for v. Thus it is sufficient to study a node v that can
connect to two different parents to reach a sink node.

All the nodes that are further away from the root than
v, which do not have an alternative path, have to wait until
this node has established a new route before they can deliver
messages successfully again. Thus the only difference between
these nodes is the (hop) distance to v. The most simple
scenario to study local repair is thus a chain network with
two sinks. To observe both the behavior of v (node ID 1 in

1 2 3 4 10

11

12 ID node ID

Fig. 3. 12-node Chain Topology

Figure 3) and of
its children under
moderate data traffic,
we selected a chain
topology containing
12 nodes: two sinks
(nodes 11 and 12) and 10 non-sinks. The 10 non-sink nodes
are placed in a chain, with the distance to two consecutive
nodes large enough to ensure that a node in a chain would
have exactly two neighbors. I.e., it can exchange messages
only with the node just before it and the node right after it.
To model a low-power and lossy network, the packet success
rate of each link is set to a relatively small value, 64%. Due
to MAC layer retransmissions the application layer message
success probability is around 99%, even for messages that
are passed along the whole chain.

We define the recovery time of node x to comprise the time
interval from the time of removing the link between node 1
and its root until it can deliver messages (now to the other
root) again. We are mainly concerned with the recovery time

of the node situated the closest to the roots, because it is the
only one that has to perform a parent change. The recovery
times of the other nodes are interesting to observe because they
show the time it takes for the root change to propagate through
the chain. Figure 2 depicts the measurements of the recovery
times with the Contiki RPL default settings. Furthermore it
shows the success probability of data messages sent if there
are no communication problems in the network as well as the
number of control messages emitted by all nodes per second.
On average the number of bytes per second used for control
traffic is 19.47 with a standard deviation of 1.37.

III. RECOVERY ENHANCEMENTS

RPL self-healing is accomplished with global and local
repair mechanisms, as presented in Section II. In this section,
we discuss approaches for a local repair speed-up.

A. Tuning DIO Settings

A key component of RPL’s local repair mechanism is
the maintenance of upward routes. Nodes in a DODAG
keep these routes up-to-date through the exchange of DIO
messages, which are periodically broadcast link locally (only
to neighbors situated one-hop away). The frequency of DIO
broadcast is controlled by a trickle timer [15], initialized with
a minimum time interval. When the timer goes off, if no
preferred parent changes or DODAG changes occurred for the
concerned node, the DIO broadcast interval doubles. Clearly,
the minimum transmission interval and the maximum allowed
number of doublings have a considerable influence on system
recovery time: receiving DIOs more often allows nodes to
become aware of failures more rapidly. However, frequent
DIOs increase control traffic overhead, causing data messages
to be dropped. Message loss occurs especially at nodes close
to DODAG roots in multipoint-to-point traffic flows.

B. Probing

As presented in Section II, the current

LB
LC LD

C
B D

A ID node ID

Fig. 4. Links LB and LD are not
updated

path metrics in our system are
updated upon sending data or
control messages. Therefore, in
the multipoint-to-point traffic
flow scenario, only the state
of the link from a node to
its preferred parent is updated,
while links to potential parents
remain in a stale state. For example, in Figure 4, suppose A

chooses C to be its preferred parent. As a consequence, the
ETX value corresponding to LC is updated every time A sends
a control or a data message to C, keeping LC’s state updated
(as described in Section II-B). However, once A chooses its
preferred parent, it does not send anything to B or D, causing
LB and LD to be seen as having a stale (and most of the time
high) ETX value. Because this occurs at initialization, A could
be stuck with its first choice of preferred parent C (since it
sees all the other links as poor) until it explicitly receives a No
Path DAO, even if B or D could have become better options.

Being aware of the state of their surroundings is essential
for all the nodes in the DODAG, enabling them to make sen-
sible decisions when choosing their preferred parents. In order
for the nodes to explore all available links, we have set up a
probing system on top of RPL: periodically, a small message is
sent by every node to all of its potential parents. The probes’
purpose is to trigger the update of link metrics (ETX) for
neighboring links. Probing is a simple and effective solution
for providing more flexibility when choosing preferred parents.
On the other hand, similarly to the previous subsection, one
should consider the probe sending time interval, in order to
avoid excessive control traffic overhead.

C. Parent List Purging

As discussed in the previous subsection, probing all po-
tential parents can generate a substantial amount of control
traffic. Therefore, the preferred parents list should not contain
elements to which nodes would most likely not connect. In
addition, a carefully selected parent list could help avoid loop-
formation in the DODAG, which is directly linked to improved
failure recovery times. Therefore, we have introduced a mech-
anism that periodically applies two filters to the nodes’ parent
lists. Firstly, it ensures locally that the children and the parent
sets of a node are disjoint, since it would not be wise for nodes
to connect to one of their children when their preferred parent
becomes unsuitable. More precisely, all nodes for which a
routing table entry exists due to DAOs are eliminated from the
parent candidate list. In addition, we introduced a route expiry
time for the entries in the routing table holding routes towards
the children, to make sure that they stay fresh. Therefore, if
one of the children becomes a suitable parent, its entry in the
routing table will eventually expire, allowing the node to be a
candidate for the parent set.

In the second filter, nodes whose rank is greater than the
rank of the current node are removed from the parent list as
well. This is done to enforce Rule 5, Section 8.2.1 of [18],
which guarantees that nodes will only keep potential parents
that are better placed in the DODAG than themselves. This is
not currently enforced in the implementation of ContikiRPL.
The periodical purging of the parent-lists was integrated with
the already existing RPL periodic maintenance operations and
does not induce any supplementary messages. It decreases the
system-level complexity (by decreasing probe-related control
traffic and loop forming), at the cost of introducing extra
sequential complexity at node level.

D. Virtual Sinks

The last mechanism introduced in our system was in-
spired by anycast routing principles. Consider the follow-
ing scenario, illustrated in Figure 5. B has A as its pre-
ferred parent, and A is one hop away from R1, one of

x

to R1

to R1R1

dropped
to R1

R2

A

B ID node ID

Fig. 5. R2 does not process B’s
message because it was destined to R1

the two sinks. Both A and
B are a part of R1’s DAG.
Now, A chooses to switch to
R2, the other sink. However,
it can happen that the mes-
sage in which it announces
its new DAG gets lost. If B
sends a message destined to
R1 (because it thinks it is
part of R1’s DAG), it will
get forwarded upwards by A and it will reach R2. Finally,
R2 will discard the message, because it was destined to R1.
This is not the desired behavior, since we want to use all data
that reaches the roots; i.e., on an abstract level, we view all
sinks as one unified sink, with different spatial representatives
in the network. Hence we introduce virtual sinks, i.e. all sinks
(i.e. DODAG roots) were enhanced with a common virtual
IP address. Likewise, instead of sending messages to specific
sinks, non-sink nodes make use of the unique virtual address.

The virtual sink address increases the overall message
success rate, as fewer messages are lost during DODAG
switches.

IV. EVALUATION

In this section we present node recovery-time simulation
results for the chain topology introduced in Section II-D. We
showcase two approaches for local repair speed-up, described
in Section III. The first approach is based on tuning already
existing RPL DIO parameters. The second approach explores
the effects of probing, parent list purging and virtual sinks.
We will look at these three mechanisms in detail, evaluating
each of them separately and collectively. Finally, we provide
a comparison of the two approaches inSection IV-C.

Our implementation was built on top of ContikiRPL
2.5 [17] and the experiments were run in the COOJA simula-
tor [12]. The data transmission rate was set to a relatively low
value of 100 kb/s to mimic challenging conditions regarding
traffic load or low-rate media. Every non-root node in the
chain generates a data message (of 64 bytes) once every 10
seconds. Each scenario has been simulated 50 times, with
distinct random seeds that influence the start up phase and
CSMA back-off intervals. The DIO timers were set as follows:
a minimum interval of approximately 4 seconds (212 ms)
and 8 allowed interval doublings, corresponding to the default
RPL configuration and a minimum interval of approximately
2 seconds (211 ms) and 2 doublings, corresponding to a tuned
version of the DIO timer. When the probing mechanism is
activated, probes are sent every 4s. After a stabilization period
of 300s that allows the nodes to connect to a DODAG and
reach large trickle time intervals, the root to which the nodes
are connected stops communicating. The recovery time until

0

50

100

150

200

250

300
3.34

1

5.87

2

12.53

3

14.6

4

16.72

5

19.5

6

21.9

7

23.58

8

26.53

9

28.14

10

No enhancements DIO tuned

0

50

100

150

200

250

300
28.24

1

32.24

2

41.63

3

47.18

4

51.33

5

54.94

6

60.59

7

63.78

8

71.98

9

76.69

10

Probing DIO default

0

50

100

150

200

250

300
44.74

1

49.01

2

58.38

3

65.19

4

69.52

5

73.84

6

83.05

7

90.57

8

115.41

9

121.89

10

Purging DIO default

a) b) c)

0

50

100

150

200

250

300
16.92

1

20.1

2

24.32

3

28.16

4

28.65

5

30.41

6

31.18

7

32.55

8

32.76

9

34.52

10

Virtual sink DIO default

0

50

100

150

200

250

300
19.19

1

22.61

2

30.47

3

36.09

4

39.1

5

45.38

6

45.98

7

56.79

8

66.81

9

64.61

10

All enhancements DIO default

0

50

100

150

200

250

300
3.57

1

6.85

2

11.69

3

16.9

4

17.97

5

20.78

6

20.7

7

25.53

8

25.5

9

28.52

10

All enhancements DIO tuned

d) e) f)

Fig. 6. Recovery time measurements in s for DIO Tuning, Probing, Purging, Virtual Sink, all enhancements combined with default and tuned DIO settings.

a node is able to send messages to the root successfully is
measured for each node. Furthermore, the number of control
traffic packets is counted and the success rate of application
data messages under stable conditions is stored.

A. Tuning DIO Settings

Comparing the recovery time plots with and without DIO
tuning (Figures 2 and 6.a) shows that reducing the minimum
time interval to 2 seconds and allowing at most two doublings
leads to a large cut in the recovery time. In particular, the
first node can choose a different parent in about 3 seconds
on average compared to roughly 60s without DIO tuning. For
nodes which are situated further from the failure point (in
our case the root), the parent switch is propagated starting
from node 1, hop by hop, reaching node 10 in less than
a third of the original time. The tuned average number of
DIOs sent per second is about 3.2 for the whole network
compared to roughly 0.4 with the default settings (Figure 7).
The average number of control bytes sent per second in this
setting is 512.87, with a standard deviation of 2.43. The
average success rate still exceeds 90% for all nodes, but
we can see that the deviation increases and that increased
control traffic leads to more collisions and hence slightly lower
application layer message success rates. We conducted some
further experiments with different DIO settings. Restricting
the number of doublings even more does not decrease the
recovery time significantly, but leads to more overhead even
in ideal conditions. Reducing the minimum interval length
to 1 second does help in this scenario, but as soon as the
traffic load is slightly increased or if the data rate is decreased,
this adjustment leads to too many collisions and thus a lower
success rate. Therefore, our recommended parameter settings
for fast failure recovery are 2 and 8 seconds for the minimum
and maximum interval respectively. Clearly this has to be
checked for every deployment and may need to be modified
for different applications and requirements.

B. Single Mechanisms on Chain

1) Probing (Fig. 6.b): Sending a probing message to
all neighbors regularly and thus having a good estimate on

(asymmetric) link qualities is able to shorten the recovery time
significantly too. For nodes close to the point of failure, the
speed up is in the order of a factor of two. Nodes further
away are updated more slowly, because of the default DIO
settings, which prevent the parent change to propagate to far
away nodes quickly. Since the probing messages are much
shorter than the DIOs, they occupy less of the bandwidth and
thus allow a better utilization of the channel for data traffic. On
the other hand, the time until nodes far away from the failure
have been updated takes longer, since this depends mostly on
the DIOs. By varying the time interval between subsequent
probes, one can observe a trade-off between the recovery time
of nodes close to a failure and the amount of the control traffic.

2) Purging (Fig. 6.c): Cleaning the candidate parent list
and avoiding to connect to your children does not improve
the recovery time in chain networks, if used on its own.
However, when combined with probing and/or virtual sinks
other mechanisms, it is able to reduce the recovery time
significantly (Figure 6.e).

3) Virtual Sink (Fig. 6.d): As expected virtual sinks do not
help the nodes that are very close to the failure. However, for
nodes further away they do decrease the median recovery time
significantly when combined with probing. Moreover, they
help increase the success rate rapidly and allow messages to
be delivered to a sink, even when the DODAG root is changed.

C. Tuning DIO Settings vs. All Enhancements

Not surprisingly we obtain the best results with the
default DIO setting when combining all three mechanisms,
see Fig. 6.e). The first hop node can recover in less than
20 seconds, while the scenario with default settings and no
enhancements used more than 60 seconds. The averages of
the other nodes are also much lower. While we do not exhibit
the plots of all the combinations of two enhancements, we
want to emphasize that the benefit of using two of them is
lower than applying all three. Compared to the scenario with
tuned DIO parameters, the first few nodes profit more from
the enhancements, while the nodes further away need frequent
DIOs to react quickly. On the other hand, the control traffic
overhead mostly dues to the higher DIO rate can be prohibitive

and does influence the success rate, as can be seen in Fig. 7.
Tuned DIO settings together with all enhancements does not

 hop distance to root

0

20

40

60

80

100

su
cc

e
ss

 r
a
te

 i
n
 %

1 2 3 4 5 6 7 8 9 10

Application Message Delivery

 hop distance to root

0

20

40

60

80

100

su
cc

e
ss

 r
a
te

 i
n
 %

1 2 3 4 5 6 7 8 9 10

Application Message Delivery

0

1

2

3

4

5

6

#
 p

a
ck

e
ts

 /
 s

DIS DIO DAO
DAO ACK

Control Traffic Load

0

1

2

3

4

5

6

#
 p

a
ck

e
ts

 /
 s

DIS DIO DAO
DAO ACK

PROBE

Control Traffic Load

Fig. 7. Data packet delivery rate(top), number of messages emitted per second
for each control traffic type (bottom) with DIO tuning (left) or applying all
enhancements (right). The average number of control traffic bytes per second
is 512.87 (2.43 std) with tuned DIO settings, while applying all enhancements
results in an average of 204.05 (1.44 std).

lead to another reduction of the recovery time, see Fig. 6.f).
This is mostly due to the fact that the control traffic is around
660 bytes per second in this case. This demonstrates that a
careful analysis of the scenarios before a deployment can help
to find good parameter settings.

V. RELATED WORK

Numerous studies on the performance of the RPL protocol
in general have been conducted. Some of them focus on the
performance of RPL on (simulated) wireless networks [4],
[6], [16] and power line communication [2], [3]. Others study
RPL’s implementations interoperability [10], the performance
when nodes move [9], as well as multipath extensions [14].

Up to now, to the best of our knowledge, an in-depth
analysis of the failure recovery speed of RPL’s local repair
mechanism has not yet been performed. In an extensive
performance evaluation of RPL, Tripathi, Oliveira and Vasseur
touch upon the problem of connectivity loss and the associated
recovery time [16]. However, the local repair mechanism is
inhibited and only global repair is considered. Our work
complements this study, focusing on local repair. Moreover,
Kermajani and Gomez examine the route change latency in
the context of the 6LoWPAN neighbor discovery protocol, but
do not show a direct relationship between the route change
latency and RPL specific mechanisms, as we will exhibit in
the following sections [8]. Another analysis of the RPL repair
process, using ContikiRPL was conducted by Korte et al [11].
An important point presented in their work is the apparent
independence of failure recovery times and DIO timers. In
contrast, our study shows that the recovery time is closely
linked to the DIO sending frequency. The discrepancy between
our conclusions may come from the experimental setup (more
precisely, the point in time when the node was switched off)
and the fact that only the DIO timer minimum interval was
varied in [11]. If the nodes are switched off when the DODAG
has stabilized, DIOs are sent rarely even if the DIO timer
interval was small initially, because of the trickle mechanism.
Thus, the recovery time in [11] is not only affected by the
DIO sending frequency.

VI. CONCLUSION

We investigated the recovery of RPL from communica-
tion failures, identified the influencing factors and proposed
possible ways for improvement. More specifically, apart from
choosing suitable parameter settings, we devised and analysed
three enhancement mechanisms. Our findings show that there
is a tradeoff between the simplicity of changing the DIO
settings and amount of control traffic (but keep in mind that the
three enhancements are also easy to implement) as illustrated
in Fig. 7. If a deployment features long paths it is better
to tune the DIO timer parameters while short paths benefit
greatly from the other enhancements. By combining all en-
hancements one can achieve fast recovery times for all nodes.
The improved recovery times by our proposed enhancements
were verified by further simulations of RPL deployments in
realistic medium voltage power line communication scenarios
such as those described in [1]. As a simulation cannot replace
a real deployment these results may not be accurate in practice
but they serve as a first indication for the suitability of RPL
for smart grid applications. Moreover they can help to choose
suitable parameter configurations and enhancements.

REFERENCES

[1] O. Balmau, D. Dzung, K. Karaagac, V. Nesovic, A. Paunovic, Y. A.
Pignolet, and N. Tehrani. Evaluation of RPL for Medium Voltage Power
Line Communication. IEEE SmartGridComm 2014.

[2] L. Ben Saad, C. Chauvenet, B. Tourancheau, et al. Simulation of the
RPL Routing Protocol for IPv6 Sensor Networks: Two Cases Studies.
In SENSORCOMM, 2011.

[3] C. Chauvenet, B. Tourancheau, D. Genon-Catalot, P. Goudet, and
M. Pouillot. A Communication Stack over PLC for Multi Physical
Layer IPv6 Networking. In Smart Grid Communications, 2010.

[4] T. Clausen and U. Herberg. Comparative study of rpl-enabled optimized
broadcast in wireless sensor networks. In ISSNIP, pages 7–12, 2010.

[5] S. Galli, A. Scaglione, and Z. Wang. Power Line Communications and
the Smart Grid. In IEEE SmartGridComm, 2010.

[6] J. Ko, S. Dawson-Haggerty, O. Gnawali, D. Culler, A. Terzis. Evaluating
the performance of rpl and 6lowpan in tinyos. In IPSN, 2011.

[7] JP. Vasseur et al. Routing Metrics Used for Path Calculation in Low-
Power and Lossy Networks. IETF RFC 6551, 2012.

[8] H. R. Kermajani and C. Gomez. Route change latency in low-power
and lossy wireless networks using rpl and 6lowpan neighbor discovery.
In ISCC, 2011.

[9] Kevin C. Lee et al. Rpl under mobility. In CCNC, 2012.
[10] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, A. Terzis,

A. Dunkels, and D. Culler. ContikiRPL and TinyRPL: Happy Together.
In IPSN, 2011.

[11] K. D. Korte, A. Sehgal, and J. Schönwälder. A study of the rpl repair
process using contikirpl. In Dependable Networks and Services, 2012.

[12] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level
sensor network simulation with cooja. In Local Computer Networks,
IEEE Conference on, 2006.

[13] A. Patel, J. Aparicio, N. Tas, M. Loiacono, and J. Rosca. Assessing
communications technology options for smart grid applications. In IEEE
SmartGridComm, 2011.

[14] B. Pavković, F. Theoleyre, and A. Duda. Multipath opportunistic rpl
routing over ieee 802.15. 4. In Modeling, analysis and simulation of
wireless and mobile systems, 2011.

[15] Ph. Levis et al. RFC 6206: The Trickle Algorithm. IETF, 2011.
[16] J. Tripathi, J. de Oliveira, and J. Vasseur. A performance evaluation

study of RPL: Routing Protocol for Low power and Lossy Networks.
In CISS, 2010.

[17] N. Tsiftes, J. Eriksson, and A. Dunkels. Low-Power Wireless IPv6
Routing with ContikiRPL. In IPSN, 2010.

[18] T. Winter, P. Thubert, A. Brandt, T. H. Clausen, J. W. Hui, R. Kelsey,
P. Levis, K. Pister, R. Struik, and J. Vasseur. RPL: IPv6 Routing Protocol
for Low power and Lossy Networks. IETF RFC 6550, 2012.

