
Lightweight Indoor Localization System

Mihai Bâce
ETH Zurich, Switzerland

Email: mihai.bace@inf.ethz.ch

Yvonne Anne Pignolet
ABB Corporate Research, Switzerland

Email: yvonne-anne.pignolet@ch.abb.com

Abstract— Indoor localization is an important topic for
context aware applications. In particular, many applications for
wireless devices can benefit from knowing the location of a user.
Despite the huge effort from the research community to solve
the localization problem, there is no widely accepted solution for
localization in an indoor environment. In this paper we focus on
constrained devices and propose an extremely lightweight indoor
localization system that can be scaled to different devices, from
smartphones to smart glasses and other devices.

We devise a simple yet effective WiFi-based system with low
computational complexity, which does not need any additional
special infrastructure nor map or an internet connection. Our
system relies on IEEE 802.11 Received Signal Strength Indicator
(RSSI) values and a dead reckoning module to collect walking
trajectories which are further clustered and compressed to build
a sensor map. The key novelty of our work is a merging algorithm
that can fuse multiple sensor maps.

We evaluate our system in a real world scenario and we
show that using the map produced by our merging algorithm we
achieve room-level accuracy. Our system is also comparable to
state of the art systems, despite the lightweight approach.

I. INTRODUCTION

Nowadays, context aware applications are becoming more
and more popular and they allow businesses to develop a
line of products to target specific customers and needs. A
few years ago, there were no localization systems until GPS
became widely available. This unveiled many new ways in
which companies could interact with their customers and offer
extremely valuable services like turn-by-turn navigation. GPS
systems have evolved a lot and today’s technologies are very
refined, achieving centimeter level accuracy. While this is
impressive, once a user steps inside, a localization system
based on GPS will not work due to the attenuation of the
signal strength and other factors that cause the errors to be
tens or hundreds of meters.

Recently, there has been a lot of effort to develop an indoor
localization systems which can be easily deployed and used in
any type of indoor space. Such systems can be split into two
important categories: infrastructure-based and infrastructure-
less. While one might think that having additional infras-
tructure improves the localization error significantly, a recent
localization competition, the Microsoft Indoor Localization
Competition - IPSN 2014 [10], has shown that in practice,
having the same conditions and time to calibrate such systems,
they behave very similarly. More precisely, infrastructure-
less systems achieve a localization error in the same range
as infrastructure-based systems. Another important conclusion
from the localization competition is that the indoor location

problem is still unsolved. It is unclear if this issue is caused
by the general methods or techniques or by the poor precision
of various sensors.

What we can notice in most of the localization systems
available is that most of the results are incremental (e.g.
localization error improved only marginally). Thus, instead
of focusing on the absolute error, we focus on providing a
localization system that requires no prior calibration or maps,
no user interaction and low computation complexity.

For consumer related indoor localization applications, an
error range of 2-5 meters is sufficient since this provides room
level accuracy, on the other hand it is crucial to keep the
organisational complexity low [3]. In our paper we present
a simple localization system that can be easily extended to
different sensors and types of devices and at the same time,
maintain a comparable error with state of the art systems.
Our focus is to provide a lightweight system with minimal
requirements so it can be used for wearables and embedded
devices. Apart from the existence of WiFi access points (APs),
no specialized infrastructure is needed, and our system works
without a map or an internet connection. Its main ingredients
are a pedestrian dead reckoning module which offers step
detection, orientation and step length estimation, a sensing
module to collect WiFi RSSI values, a clustering algorithm to
reduce the amount of information to be stored and a merging
algorithm to combine several trajectories into a sensor map.
While other approaches use rather involved Neural Networks
and Particle Filter algorithms, our approach is based on simple
algorithms of low computational complexity and thus it can
execute all operations on the device itself, no communication
with a localization server is needed. On the other hand, if
there is a possibility for communication with other devices,
the sensor maps can be exchanged and merged easily and thus
the potential of crowd-sourcing can be used.

The remainder of this paper is organized as follows.
In Section II we review other WiFi-based indoor localiza-
tion approaches without additional infrastructure. We give an
overview of the main components of the system in Section III,
followed by a more detailed description in the subsequent
sections. Section VIII describes the evaluation of the system
in a real-world environment before we conclude the paper in
the last section.

II. RELATED WORK

In the past decade a large body of work on Indoor Localiza-
tion has accrued. It is beyond the scope of this paper to review

all approaches. We focus here on WiFi-based infrastructure-
less systems that do not need user interaction nor deploy any
specific hardware but identify the location of the device based
on WiFi and sensor measurements on the device only. Among
these systems most use a localization server that executes
the actual localization computations. E.g., the winner of the
Microsoft IPSN Indoor Localization Challenge in 2014 [4] lets
the server location engine run a nonlinear recursive Bayesian
filter to combine incoming location information, then a particle
filter method is employed for the estimation of the location.
Zou et al. [1] also use a location server where RSSI values
are processed in a Single-hidden Layer Feedforward Neural
Network architecture. Similarly, Li et al. [7] use augmented
particle filtering to fuse signals from WiFi, magnetic field and
IMU sensors, requiring offline bootstrapping for a fingerprint
database. LiFS [17] builds a high dimensional fingerprint
space, preserving distances between fingerprints, with the goal
to assign these fingerprints to a physical location with little
human intervention.

Another line of research requires a (preprocessed) floor-
plan, to prevent localization errors by crossing a wall or
moving into a non accessible area. E.g., the runner-up of
the above mentioned competition [8] combines WiFi RSSI
values with Inertial Measurement Unit (IMU) readings. For
the localization, sensor fusion with a particle filter is applied,
after which a map matching submodule handles and corrects
any inaccurate locations. A similar approach is used in [19], by
applying linear chain conditional random fields and constraints
derived from preprocessed floorplans. Park [14] proposes a
HMM-based trajectory matching algorithm to recover user
trajectories.

Among approaches that do not require floor plans nor a
location server is [20]. This work combines magnetic field and
WiFi measurements, using particle filter methods and a sim-
ilarity Voronoi-graph. It is computationally more demanding
than our system. Another approach that tries to create a floor
plan using dead reckoning, without any prior information, is
PiLoc [9]. The difference from our work is that they cluster
walking paths into segments, not points. One of the drawbacks
to that approach is that in its current stage, the system can only
consider ”turns and long straight lines” [9]. On top of this, their
system may fail to differentiate intersecting or parallel paths
that are not separated by large enough distances. Our approach
is not sensitive to such issues since we do not attempt to map
the exact floor plan, but rather offer room-level localization
accuracy.

In the above mentioned competition, different localization
approaches were compared under the same conditions [10].
The average error obtained by infrastructure-less system was
within 1.5m and 5.3m.

III. SYSTEM OVERVIEW

In this paper we are proposing a novel indoor localization
system for constrained devices. For our proof of concept
we use a smartphone as the hardware for our users because
it includes a variety of sensors which can directly be used
without any complicated calibration efforts. Nowadays, smart-
phones are a commodity and people have access to them much

easier than in the past. This makes it the obvious choice and
compromise between accuracy and ease of deployment. The
system that we are proposing is based on step detection, WiFi
RSSI observations and graph-based methods for representing
the environment as a sensor map. Since the computational
complexity is low and the sensor map condenses the measured
observations, this approach can be applied to other wearable
or embedded devices easily.

We apply a Simultaneous Localization and Mapping
(SLAM) approach. Doing both localization and mapping at
the same time saves us from a separate costly startup phase
(whether this implies fingerprinting an area or installing ex-
pensive dedicated hardware) and it leads to a continuously
improving system. It is worth mentioning that by no site survey
we refer to the fact that we do not have a prior data collection
phase for our system. Of course by having users walk in the
building with their devices we survey the indoor space, but
the key difference is that this survey happens already when
the users are using the system. Thus, they can already be
positioned with regards to a map (if present) or to the paths
that they have collected. While we require WiFi access points
(APs) to be in place, we do not need an internet connection
nor use any additional infrastructure.

Localization

Client Server

Sensor Data

PDR

Local Map

Global Map

Data Fusion

Communication DatabaseDatabase Communication DatabaseHTTP

Fig. 1: System overview. The client collects sensor data which
is used both as the input to update the local map continuously
and for localization. If a connection to the server is available
the local map of the client can be merged with the global map
constructed by other clients.

Our system can be used as a classical client-server archi-
tecture (Figure 1) or running on the client only (left part of
Figure 1). In the first case, the client collects sensor data which
is used by the Pedestrian Dead Reckoning (PDR) module to
detect if a step has been taken (step counter), the length of
the step and the orientation. For each step the RSSI values of
near-by access points are saved (Data Collection). Using this
information, the client can update a local sensor map of an
area. The local sensor map condenses the available data and
only stores a fraction of the measured data (Clustering and
Merging). The localization algorithm is executed after every
step as well and the best matching coordinates of the local
sensor map are returned to the user (Localization). The local
sensor map is only a partial view of the environment which
can be fused with a global sensor map to which all clients
contribute. To this end, the client and the server communicate

over HTTP and exchange map data. Once the server receives
a local sensor map it will fuse it with the current global map
(Merging). Afterwards, the client will receive an updated map
which can be used for localization.

The main responsibility of the server is to fuse multiple
local maps into a global map. The localization system that
we are proposing, including the merging algorithm, is the
key novelty in our work and it is the element that adds the
flexibility to extend our solution to difference devices. The
only requirements for our system are a WiFi chip and the IMU
sensors (accelerometer, gyroscope and magnetometer), which
are already present in other devices like Google Glass.

An important aspect of our system is that the server
is not always needed. While it supports the crowd-sourcing
paradigm, our system can also run independently of the server.
A device can build several local maps and fuse them together
to create an extended map using the exact same lightweight
merging algorithm that the server uses. This gives us the
benefit that even when there is no internet connection, our
system can still collect data, create a sensor map and use it
for indoor localization.

IV. STEP-BASED DATA COLLECTION

Using the sensors of a smartphone, the built-in accelerom-
eters can be used as a pedometer and the built-in gyroscope
as a compass, to provide heading. This is the most important
aspect of a Pedestrian Dead Reckoning module (PDR). While
PDR used alone leads to large accumulated errors which are
detrimental for localization, it is often used to complement
other localization approaches. In our system we use the PDR
as a building block to compute coordinates for WiFi measure-
ments. Every time the PDR detects a step, WiFi data is being
collected. More precisely, the RSSI values of all APs in the
neighborhood are stored. Together with an estimation of the
step length and heading the collected data can be assigned to
coordinates relative to previous steps.

The step detection algorithm is based on close observation
of the stepping process, which is split in two phases: a
propulsive phase and a contact phase. In the propulsive phase
there is an increase in linear acceleration, while in the contact
phase there is a decrease. Just using the norm of the three
axis accelerometer measurements, a periodic behavior can
be observed, where each period corresponds to a step. The
pedestrian dead reckoning module we use is based on [2] for
step detection, on [12] for the heading estimation and on
[15] for step length estimation. It can be easily replaced by a
module applying different approaches to increase the accuracy
or to reduce the computational complexity.

A sequence of WiFi measurements and coordinates of
steps represents an augmented walking trajectory. A walking
trajectory is typically defined as a path that a moving object
follows through space as a function of time, which also holds
true in our case, but with the added difference that we also
record the sensor readings from the smartphone for each step.

Using step-based data collection has two advantages. First,
data is only recorded when the user is moving which reduces

battery power consumption and memory usage. Second, a step
as a basic unit for measurements and localization is intuitive
to understand for users and developers. On the other hand
this approach has drawbacks for areas with moving walkways,
as no data would be collected when the user is standing on
them and the step length estimation would be misleading if
the user is walking. However, both these problems could be
overcome with a more refined approach at the expense of
more computational overhead (by sampling data even if no
steps are detected but storing them only if they differ from
previous samples and by adjusting the estimated step length
with a factor based on the change rate of data collection). In
this paper we focus on scenarios without moving walkways.

V. CLUSTERING

As mentioned in the system overview section, our approach
to indoor localization is to collect walking trajectories which
are augmented with sensor readings for each step. The main
idea that supports our method is based on the observation that
once the WiFi signal passes through walls, it suffers from
attenuation and the variation is significant enough from one
room to the other. Taking into consideration this aspect, it is
possible to cluster the collected data. Once the points have
been clustered, each sample can be attributed to one cluster.
Further on, using this information we can build a connectivity
graph between the discovered clusters.

There are many clustering and classification algorithms
available, one of the most common, simple and used one is K-
Means [11]. The general idea behind the K-Means clustering
algorithm is that given a set of N observations, (x1, x2, ..., xN)
where each observation is a real d-dimensional vector, it tries
to partition the observations into K sets, such as

argmin
S

K∑
i=1

∑
xj∈Si

||xj − µi||2, (1)

where µi is the mean of points in Si and (K ≤ N), S =
S1, S2, ..., Sk.

In our case we cluster each walking trajectory as follows.
N is the number of steps of the trajectory and xj is the
vector of the RSSI values in dBm measured at step j. If
n is the number the AP MAC addresses encountered in the
measurements, the ith element of each n-dimensional vector
xj represents the RSSI value of the ith MAC address. For
cases when one MAC address is present in one observation,
but not the other, we have assumed a default value of −100
dBm. We will explain later which distance metrics we used.

In Figure 2 we can see a walking trajectory that has not
been clustered and in Figure 3 we can see the same walking
trajectory in which each node belongs to one cluster. Figure 4
shows the connectivity graph between the identified clusters.

For the K-Means clustering, an important step is the way
in which we are selecting initial clusters. We have identified
two methods that lead to good results. The first one implies
choosing the initial cluster centers randomly, making sure that
we do not pick the same point twice. The other alternative,

1

2 3

4

5

6

Fig. 2: Walking trajectory
before clustering the points

A

A A

B

C

C

Fig. 3: Walking path
after clustering and assigning points

A

B

C

Fig. 4: Connectivity graph between
identified clusters

which we believe works better is to choose the initial cluster
centers as far away from each other as possible.

Clustering is executed whenever the user stops walking.
Thus the number of steps of a trajectory can vary. Hence
the number of cluster centers (centroids) varies as well. To
achieve room-level accuracy we start the clustering algorithm
with a default number of cluster centers (equation 2) of one
for every 5 steps. The resulting number of cluster centers after
the execution of the algorithm then depends on the trajectory.

kinitial =
noOfStepsInWalkingTrajecotory

5
. (2)

A. Distance metrics

In any clustering algorithm or when trying to compare two
elements, a metric must be defined, which takes into account
some properties and based on those properties we can conclude
how different the two elements are.

Comparing WiFi RSSI values is not a novel idea. Re-
searchers have tried to model RSSI values so that they can
better predict if two values are similar or not, but, despite
these efforts, in practice it seems that simpler distance metrics
yield good results. In dense urban environments (like shop-
ping malls) we can end up having tens of RSSI entries per
measurement.

In our work, we investigated multiple different distance
metrics. We will only present the ones which worked best in
our case.

1. RSS Absolute Difference [18].

dAbsolute(xi, xj) =

n∑
l=1

|xi(l)− xj(l)|, (3)

where xi represents the observation vector described pre-
viously.

2. RSS Squared Difference.

dEuclidean(xi, xj) =

√√√√ n∑
l=1

(xi(l)− xj(l))2 (4)

There are alternative distance measures like the RSS Stack-
ing Difference used in WILL [16], where researchers claim

that the relationship between different APs is more stable than
comparing absolute values. Another distance measure is a top
k approach which means selecting the strongest k access points
from each sample and only use those for the distance measure.

However, in practice, we have noticed that the RSS Abso-
lute Difference and the RSS Squared Difference lead to very
similar results, but better than the RSS Stacking Difference
and the top k approach. On top of this, the RSS Stacking
Difference is computationally more expensive because we need
to compare each AP to all other. For such a comparison, WILL
[16] assumes knowing all the APs in advance, but in our case
we did not want to use any prior information.

Taking the above into account, we propose to choose the
RSS Absolute Difference as it leads to best results and it is
the least expensive in terms of computational complexity.

VI. MERGING

Once a user has collected a walking trajectory, it is being
clustered, obtaining an abstracted sensor map of a path. This
sensor map needs then to be fused with the local map stored
on the user’s device.

The merging process is the key novelty of our work. Our
merging algorithm can run both on the devices themselves and
on the server. Once on the device itself, when we merge a new
walking trajectory which has been clustered with the current
local map from the phone. The second merging happens when
the phone sends its local map to the server and the server
merges it with the global map, thus enhancing the overall view
of the environment.

Sensor map merging can only be performed if we know
which nodes from one map are similar to the ones in the
other map. This can be achieved by using a similarity matrix.
For creating a meaningful similarity measure we will use the
distance measures that we have explained in the clustering
section of this paper. The distance measurement, represented
by a number, is transformed into a similarity metric, which
represents a value between 0 and 1. 0 similarity means that the
nodes are completely different, while a similarity of 1 means
that the nodes are identical.

The walking trajectory and the local sensor map are rep-
resented as an undirected path graph and a general undirected
graph respectively, where each vertex has attributes to repre-
sent the WiFi data collected and the coordinates derived from
PDR.

Before describing the similarity measure, there are a few
important aspects to consider when defining a new way to
asses the similarity. As stated by Nikolic [13] some of the most
important properties of a similarity measure are the following.

• If a map is compared to itself, each node of the map
should be most similar to itself.

• The similarity scores should have a fixed range, the
similarity of a node to itself always takes the maximal
value.

• A similarity score should be meaningful in itself.
Thus, it is impossible to conclude if two nodes are
similar or not, but we can conclude if a pair of nodes
is more similar than another pair of nodes. This is
one of the drawbacks of using a pairwise approach,
by building the similarity matrix.

To obtain the properties above we use a similarity measure
described by D. Koutra et al. [5], which can be used for any
distance metric that we use.

si,j = 1−

√
di,j

maxk,l(dk,l)
(5)

where sij represents the similarity and dij represents the
distance between two nodes, i and j, and each node is a
vector of stored measurement values (see xi). We use the
absolute, the euclidean and the top k distance in the evaluation
part of this paper. I.e. given a set of positions each with a
measurement vector we can use the similarity definition to
decide which positions can be merged. In localization, this
similarity measure can be used to decide which position is
closest to the currently measured values.

A. Similarity Matrix

The similarity matrix is a way in which we can measure
the pairwise similarity between the nodes of two maps.

Let’s assume we have two graphs GA = (VA, EA) and
GB = (VB , EB), where Vi denotes the set of vertices and Ei

denotes the set of edges for graph i.

The similarity function s is a function defined by M.
Nikolic [13] as s : D1 × D2 → R, where D1 and D2 are
possibly equal sets. The similarity measure over the nodes
of two graphs can be represented by a similarity matrix
S = [sij], the size being determined by the cardinality of
the sets representing the vertices, |VA| × |VB |. The element
sij denotes how similar node i is to node j.

B. Graph Matching based on the Similarity Matrix

We mentioned in the previous section that once we have
the similarity matrix we want to find what is the best matching
between the nodes of one graph and the nodes of the other
graph. When we start, the first graph represents the clusters of
the first walking trajectory, and the second graph the clusters
of the second walking trajectory. After the merging, we will
have a new graph that represents the information from both

trajectories. This graph will then be used for further merging
operations. In our case, for the matching, we only look at
nodes themselves and not at the edges. The matching problem
is a well known problem in engineering, computer science
and many other fields and sometimes it can be found under
the name of bi-partite graph matching, maximum network flow
problem or even the stable marriage problem.

The graph matching problem can be stated formally in the
following way. Let’s consider two graphs, GA = (VA, EA) and
GB = (VB , EB) which we would like to merge. In order to
merge these two graphs (which are abstractions of the sensor
maps) we need to identify which nodes from GA correspond
to which nodes from GB .

The first step is to compute the distance matrix D using a
distance metric described in the Distance Metrics section. We
compute the pairwise distance between the nodes from GA

and the nodes from GB , where di,j represents the distance
between node i from graph GA and j from graph GB . m and
n represent the number of vertices in GA and GB .

Further on, we take the distance matrix and we compute
the similarity matrix S using the metric described previously
in this paper. si,j represents the pairwise similarity from the
distance matrix using equation 5.

The similarity matrix can be further transformed into a cost
matrix C, where ci,j represents the pairwise cost calculated
from the similarity matrix using equation 6. The cost is a value
between 0 and 1, where a cost of 0 means that two nodes are
identical and a cost of 1 means that the two nodes are different.

cij = 1− sij . (6)

Now that we have the cost matrix, we can rephrase the
graph matching problem in a different way.

Suppose we have n resources which we want to assign to
n tasks on a one-to-one basis. Suppose also that we know the
cost of assigning a given resource to a given task. We wish
to find an optimal assignment, one which minimizes the total
cost. Besides this, there is also the unbalanced version of this
problem, the one in which we have n resources and m tasks,
knowing that n 6= m. Both problems can be solved using the
Hungarian method [6] and they involve using a cost matrix.

In our work, we have used the Hungarian method for
performing the matching between the nodes of two different
graphs. In practice, it is very common to have graphs of
different sizes, which is slightly different to the original version
of the algorithm that we are using. However, the simplest
solution to solve this issue and be in the classical case for
the Hungarian method, which is a square matrix, is to pad
either the columns or the rows. The padding operation only
happens after obtaining the cost matrix, otherwise we would
have extra rows or columns, which would add overhead and
useless calculations to each step. Using the cost matrix we can
apply the Hungarian method and get the optimal assignment
with a minimum cost and the highest similarity between the
nodes. This will be a n to n matching which we can further
filter based on the cost/similarity.

An important aspect to consider when finding the matching
between two graphs using the described method is that we will
always find a matching for each node of the graph containing
fewer nodes. Not all these matchings make sense, some of
them have very low similarity values. We filter them out using
a threshold t. In our system, we have manually set this value
to 0.7 based on our experiments.

The WiFi observations of the nodes which match are
combined, using the newer value for each AP, but not deleting
APs for which only one measurement exists, as it might be
temporarily down. Note that the heading information derived
from the PDR is absolute. Thus the coordinates of the larger
graphs are used as the coordinates for the merged graph. To
shift the coordinate values of the nodes without a match, the
shift between the best matching nodes is used.

Note that it can make sense to vary the threshold value
over time. Depending on the application domain it might be
beneficial to start with a relatively low threshold to ensure that
more samples populate the map. At a later point in time the
threshold can be raised to be more restrictive and save memory.
To favor newer samples, the similarity measure can be adjusted
or other aspects (like the coordinate distance) can be added to
refine the merging process. As our goal was to investigate what
accuracy we can obtain with a very simple and lightweight
implementation running on constrained devices, we omit such
optimizations.

VII. LOCALIZATION

In the previous sections we have described a way in which
we can build sensor maps and merge them to achieve a more
detailed representation of the environment. However, when
building an indoor localization system we also need to be able
to identify our current position with regards to the available
map.

For this purpose, we use a very common and simple
approach. Every time a step has been detected, a new location
query is sent to the localization component. For predicting
the best location we use the distance metric that we have
previously defined and find the closest cluster center from
our condensed map. The coordinates associated with this
cluster center are then the proposed coordinates of the current
location.

Since the cluster centers are a condensed representation of
the area and we use only one of them for the localization the
accuracy of this approach is bounded by the number of cluster
centers a map contains. As we strive for room level accuracy
and weigh low computation complexity more important, this
approach fits our requirements very well. Moreover it is easy to
exchange this component with a more sophisticated approach
using several cluster centers or additional information.

VIII. EXPERIMENTS

We implemented a prototype of our localization system
for the popular Android platform. As test devices we have
used Samsung Galaxy S4 mini devices, which have all the

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Threshold value

0

20

40

60

80

100

E
rr

o
r

p
ro

b
a
b
ili

ty
 %

 /
 M

a
tc

h
in

g
 %

Mean error probability (wrong order) per centroid / Matching %

matching absolute

matching euclidean

matching topk

error absolute

error euclidean

error topk

Fig. 5: Matching ratio and error probability for graphs of the
same path.

necessary sensors: WiFi 802.11 chip, accelerometer, gyroscope
and magnetometer.

We tested our system in a real-world environment, more
specifically in two office buildings, one belonging to a uni-
versity and one belonging to a company. The test areas cover
several offices and long corridors which allowed us to get a
good estimate on the performance of our system.

Before describing the experiments, it is important to men-
tion the constraints that we have set. Taking these constraints
into account we expected that our results are not as good as
systems that use additional infrastructure or rely on a time
consuming site survey phase, but we still managed to achieve
comparable results.

• We do not use any infrastructure beyond existing APs.
No knowledge about the APs is assumed in advance,
we do not use a floor plan as a ground truth reference
and we do not know the starting point.

• We only use the information that we can get from the
smartphone, using the built-in sensors.

A. Merging

To determine the difference between the considered dis-
tance metrics and to find a good threshold value t, we per-
formed the following experiments. We collected three separate
walking trajectories of ten paths of 10m to 50m length in
different buildings. For each pair of trajectories belonging to
the same path we computed what percentage of cluster centers
was matched with a cluster center from the path (matching
ratio) and what the probability of picking a cluster center
without respecting the order is. While the highest matching
ratio is achieved by the topk distance metric, it also features the
highest error probability (< 10%), see Figure 5. For paths that
do not have any nodes in common, all distance metrics work
without invalid matchings up to t = 0.75. Considering partly
matching paths confirms that a threshold of around t = 0.75
is suitable for the environments of our experiments. Since the
performance of the different distance metrics varies and there
is a tradeoff between matching ratio and error probability, there
is no clear favorite. For the sake of simplicity we propose to
select the absolute distance metric because it features lower
computational complexity than the others.

(a) (b) (c) (d) (e)

Fig. 6: The sensor map merging process. (a) Walking trajectory 1. (b) Cluster centers for walking trajectory 1. (c) Walking
trajectory 2. (d) Cluster centers for walking trajectory 2. (e) Merging multiple paths, including walks 1 and 2.

Figure 6 illustrates the merging process in a part of an
office space we used for our experiments. Figures 6a and 6c
represent two walking trajectories, which are clustered, the
result can be seen in Figures 6b and 6d. The result of matching
multiple walking paths, including the two described previously,
can be seen in Figure 6e. Note that the map is not necessary
for any part of the computation, we just use it here to illustrate
our results.

B. Localization

For the Localization experiment, we tried to replicate
the same requirements as the Microsoft Indoor Localization
Competition from IPSN 2014 [10]. The purpose of the com-
petition was to offer a standardized way to evaluate different
localization systems in the same environment. While it was
impossible to replicate the same environment, we kept the
same evaluation scheme.

We selected an origin point that we use as a reference
for the coordinate system. All the locations must be reported
relative to the origin point as two dimensional coordinates
in m (i.e. (1.2m, 2.5m)). We then marked multiple points
on the floor of the evaluation area and calculated the X and
Y coordinates of these points with respect to the predefined
origin.

The test environment can be seen in Figure 7. Figure 7a
shows the walking trajectories that we have used for building
the sensor map. Figure 7b shows the ground truth location of
the test points that we used to measure the localization error.
For each point we collected 1200 WiFi measurement samples
to be able to compute a meaningful per point localization error.
The actual localization experiment then consisted in determin-
ing the most similar node of the map for each test point. The

(a) (b)

Fig. 7: The localization setup. (a) The 12 walking trajectories
used for building the sensor map through our map merging al-
gorithm. (b) The test points used as ground truth for obtaining
the localization error.

error in this case is the euclidean distance between the ground
truth coordinates of the test points and the coordinates of the
most similar node.

Similarly to [9], we compare the average localization error

Approach Avg. error Requirements

PiLoc [9] 1 ∼ 3m WiFi + IMU
MaWi [20] 2 ∼ 5m WiFi + Magnetic
MapUme [4] ∼ 2m WiFi Fingerprinting
Laoudias et al. [8] ∼ 2m WiFi + IMU +

Fingerprinting
LiFS [17] 3 ∼ 7m WiFi + IMU +

Floor plan
Our system 1 ∼ 6m WiFi + IMU

TABLE I: Comparison to other localization systems.

to other indoor localization systems. Since implementations of
these systems are not publicly available we had to rely on
results reported in the literature. What we can notice in Table
I is that our system is on par with most of the current state
of the art systems. However, in our case no effort is required,
no fingerprinting or site survey has to be done in advance. If
the user enters an area that is not covered by the current map,
the system can determine an estimate of the position based
on dead-reckoning only. At the same time the map is being
extended for this area for subsequent queries about it without
any user interaction. One way to improve the localization error
is by improving the dead reckoning module. [21] propose an
algorithm called A3 which greatly improves the tracking error
compared to the standard Android code.

IX. CONCLUSION

In this paper we propose a novel indoor localization system
that takes user-generated walking trajectories augmented with
sensor readings, clusters them and merges them into a map.
The novel merging approach we propose is of low compu-
tational complexity and can run both on the client devices
or on a server to fuse maps from several devices. Despite
using no prior information and without any site survey we
manage to achieve a comparable localization error to state
of the art systems with more computational complexity, prior
information or infrastructure. Having fully implemented our
system on real devices and based on real world validation, our
localization system is promising and introduces a novel idea
in processing crowd-sourced sensor data. Taking into account
the large amount of different devices with WiFi and sensors
entering the market every year, we believe that our work can be
ported to other devices like embedded devices, smart glasses
and smart watches which are becoming increasingly popular
and powerful.

X. ACKNOWLEDGMENTS

We would like to thank Prof. Patrick Thiran and Vincent
Etter from École Polytechnique Fédérale de Lausanne for their
support and guidance during this project. We would also like
to thank Ettore Ferranti from ABB Baden, Switzerland for his
useful feedback.

REFERENCES

[1] H. Zou, H. Jiang, and L. Xie. Wifi based indoor localization system
by using weighted path loss and extreme learning machine. Microsoft
IPSN Indoor Localization Competition (2014).

[2] Kihlberg, J., and Tegelid, S. Map aided indoor positioning. Master
Thesis, Linköping, Sweden (2012).

[3] Kjærgaard, M. B., Krarup, M. V., Stisen, A., Prentow, T. S., Blunck,
H., Grønbæk, K., and Jensen, C. S. Indoor positioning using wi-fi–how
well is the problem understood? In International Conference on Indoor
Positioning and Indoor Navigation, vol. 28 (2013).

[4] Klepal, M., and Beder, C. Mapume–wifi based localization system.
Microsoft IPSN Indoor Localization Competition (2014).

[5] Koutra, D., Parikh, A., Ramdas, A., and Xiang, J. Algorithms for graph
similarity and subgraph matching. https://www.cs.cmu.edu/jingx/docs/
DBreport.pdf, 2011. [Online].

[6] Kuhn, H. W. The hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[7] L. Li, C. Zhao, G. Shen, and F. Zhao. Localization with multi-
modalities. Microsoft IPSN Indoor Localization Competition (2014).

[8] Laoudias et al. Accurate multi-sensor localization on android devices.
Microsoft IPSN Indoor Localization Competition (2014).

[9] Luo, C., Hong, H., and Chan, M. C. Piloc: A self-calibrating par-
ticipatory indoor localization system. In Proc. 13th Symposium on
Information Processing in Sensor Networks (IPSN) (2014).

[10] Lymberopoulos, D., Liu, J., Yang, X., Choudhury, R. R., Sen, S., and
Handziski, V. Microsoft indoor localization competition: Experiences
and lessons learned. SIGMOBILE Mob. Comput. Commun. Rev. 18, 4
(Jan. 2015), 24–31.

[11] MacQueen, J., et al. Some methods for classification and analysis
of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol. 1, California,
USA (1967), 281–297.

[12] Madgwick, S. O., Harrison, A. J., and Vaidyanathan, R. Estimation
of imu and marg orientation using a gradient descent algorithm. In
International Conference on Rehabilitation Robotics (ICORR) (2011).

[13] Nikolić, M. Measuring similarity of graph nodes by neighbor matching.
Intell. Data Anal. 16, 6 (Nov. 2012), 865–878.

[14] Park, J.-g. Indoor localization using place and motion signatures. PhD
thesis, Massachusetts Institute of Technology, 2013.

[15] Renaudin, V., Susi, M., and Lachapelle, G. Step length estimation using
handheld inertial sensors. Sensors 12, 7 (2012), 8507–8525.

[16] Wu, C., Yang, Z., Liu, Y., and Xi, W. Will: Wireless indoor localization
without site survey. IEEE Trans. Parallel Distrib. Syst. 24, 4 (2013).

[17] Yang, Z., Wu, C., and Liu, Y. Locating in fingerprint space: Wireless
indoor localization with little human intervention. In Pro. the 18th
Conference on Mobile Computing and Networking, Mobicom (2012).

[18] Yang, Z., Wu, C., and Liu, Y. Locating in fingerprint space: wireless
indoor localization with little human intervention. In MOBICOM
(2012), 269–280.

[19] Z. Xiao, H. Wen, A. Markham, and N. Trigoni. Lightweight map match-
ing for indoor localization using conditional random fields. Microsoft
IPSN Indoor Localization Competition (2014).

[20] Zhang, C., Luo, J., and Wu, J. A dual-sensor enabled indoor localization
system with crowdsensing spot survey. In Distributed Computing in
Sensor Systems (DCOSS), 2014 IEEE International Conference on (May
2014), 75–82.

[21] Zhou, P., Li, M., and Shen, G. Use it free: Instantly knowing your
phone attitude. In Proc. 20th Conference on Mobile Computing and
Networking, MobiCom (2014).

